Nox2 Oxidase Activity Accounts for the Oxidative Stress and Vasomotor Dysfunction in Mouse Cerebral Arteries following Ischemic Stroke
نویسندگان
چکیده
BACKGROUND AND PURPOSE Post-ischemic oxidative stress and vasomotor dysfunction in cerebral arteries may increase the likelihood of cognitive impairment and secondary stroke. However, the underlying mechanisms of post-stroke vascular abnormalities, as distinct from those causing primary brain injury, are poorly understood. We tested whether augmented superoxide-dependent dysfunction occurs in the mouse cerebral circulation following ischemia-reperfusion, and evaluated the role of Nox2 oxidase. METHODS Cerebral ischemia was induced in male C57Bl6/J wild-type (WT) and Nox2-deficient (Nox2(-/-)) mice by middle cerebral artery occlusion (MCAO; 0.5 h), followed by reperfusion (23.5 h). Superoxide production by MCA was measured by L-012-enhanced chemiluminescence. Nitric oxide (NO) function was assessed in cannulated and pressurized MCA via the vasoconstrictor response to N(ω)-nitro-L-arginine methyl ester (L-NAME; 100 µmol/L). Expression of Nox2, the nitration marker 3-nitrotyrosine, and leukocyte marker CD45 was assessed in cerebral arteries by Western blotting. RESULTS Following ischemia-reperfusion, superoxide production was markedly increased in the MCA of WT, but not Nox2(-/-) mice. In WT mice, L-NAME-induced constriction was reduced by ∼50% in ischemic MCA, whereas ischemia-reperfusion had no effect on responses to L-NAME in vessels from Nox2(-/-) mice. In ischemic MCA from WT mice, expression of Nox2 and 3-nitrotyrosine were ∼1.4-fold higher than in the contralateral MCA, or in ischemic or contralateral vessels from Nox2(-/-) mice. Vascular CD45 levels were unchanged by ischemia-reperfusion. CONCLUSIONS Excessive superoxide production, impaired NO function and nitrosative stress occur in mouse cerebral arteries after ischemia-reperfusion. These abnormalities appear to be exclusively due to increased activity of vascular Nox2 oxidase.
منابع مشابه
Cardiovascular oxidative stress: recent findings on ACE2 And MAO
Oxidative stress is associated with development and progression of cardiovascular disease. Angiotensin II produces oxidative stress and endothelial dysfunction, and its actions may be attenuated by the activity of angiotensin converting enzyme type 2 (ACE2) which converts angiotensin II to the vasoprotective peptide angiotensin (1-7). Similarly, increased oxidative stress is associated with aor...
متن کاملAldosterone Induces Oxidative Stress Via NADPH Oxidase and Downregulates the Endothelial NO Synthesase in Human Endothelial Cells
Aldosterone is traditionally viewed as a hormone regulating electrolyte and blood pressure homeostasis. Recent studies suggest that Aldo can cause microvascular damage, oxidative stress and endothelial dysfunction. However, its exact cellular mechanisms remain obscure. This study was undertaken to examine the effect of Aldo on superoxide production in human umbilical artery endothelial cel...
متن کاملBetulinic acid protects against cerebral ischemia-reperfusion injury in mice by reducing oxidative and nitrosative stress.
Increased production of reactive oxygen and nitrogen species following cerebral ischemia-reperfusion is a major cause for neuronal injury. In hypercholesterolemic apolipoprotein E knockout (ApoE-KO) mice, 2h of middle cerebral artery (MCA) occlusion followed by 22h of reperfusion led to an enhanced expression of NADPH oxidase subunits (NOX2, NOX4 and p22phox) and isoforms of nitric oxide syntha...
متن کاملMitochondrial Regulation of NADPH Oxidase in Hindlimb Unweighting Rat Cerebral Arteries
Exposure to microgravity results in post-flight cardiovascular deconditioning and orthostatic intolerance in astronauts. Vascular oxidative stress injury and mitochondrial dysfunction have been indicated in this process. To elucidate the mechanism for this condition, we investigated whether mitochondria regulated NADPH oxidase in hindlimb unweighting (HU) rat cerebral and mesenteric arteries. F...
متن کاملNox2 Deficiency Prevents Hypertension-Induced Vascular Dysfunction and Hypertrophy in Cerebral Arterioles
Oxidative stress is involved in many hypertension-related vascular diseases in the brain, including stroke and dementia. Thus, we examined the role of genetic deficiency of NADPH oxidase subunit Nox2 in the function and structure of cerebral arterioles during hypertension. Arterial pressure was increased in right-sided cerebral arterioles with transverse aortic banding for 4 weeks in 8-week-old...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011